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The properties of collision-free periodic motions in a system with a non-retaining constraint are studied. In 

motions of this kind the intervals in which the constraint is in a strained or slackened state alternate, and 

moreover the transition of the constraint to a strained state does not involve collisions. Conditions are 

derived for the existence of collision-free motions, and their relationship to singularities of differentiable 

mappings is ascertained. The “attracting” properties of collision-free motions are established: under certain 

conditions they are analogous to semistable limit cycles. The results are illustrated by examples: a body on 

an elastic leg [1] and a link-up of bodies in a satellite orbit [2]. 

THE PRACTICAL interest in collision-free motions is due to the possibility of “flights” of strained 
states of the constraints between different parts, without the undesirable effects associated with 
collisions, such as overloading, vibrations, energy loss, etc. [l]. However, the general properties of 
such motions have yet to be investigated; the few results available at present (such as [2]) are far 
from satisfactory. 

1. DIFFERENT TYPES OF MOTION AND THEIR DESCRIPTION 

Let 9=(41, **a, qn) be the generalized coordinates of a mechanical system, qlaO a non- 
retaining constraint, L = L(q, q’) the Lagrangian, Q = Q(q, q’) = (Ql, . . . , Q,) generalized 
forces. We assume that the functions Qj are continuously differentiable and that L is twice 
continuously differentiable in some domain G of the phase space R’“; the non-retaining constraint is 
assumed to be ideal. On the assumption that there are no collisions with the constraint, the 
Lagrange equations are 

d BL 
- - +=Q,+ R, $c+)-+ ==Qj (j=2,...,4 ( ) a hl’ (1.1) 

I j 

where R 3 0 is the reaction of the constraint. 
System (1.1) contains n + 1 unknowns: R, ql”, . . . , q,,“, so that for unique solvability we need an 

additional relation among the unknowns. A suitable relation for R and ql” in the case of an ideal 
constraint is [3] 

R # 0 + q1 = Q~’ = ql” = 0 (l-2) 

There are two basic situations in which system (1.1) is solvable: 

Case 1. The non-retaining constraint is slackened, q1 3 0; then R = 0. 
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FIG. 1. 

Case 2. The constraint is strained, R > 0; then by (1.2) qi** = 0. In that case we can first determine 
q2”, . . *, qn” from the second group of Eqs (1.1) and then substitute the results into the first 
equation to get R. Since the constraint is unilateral, only values RaO are admissible. If the 
assumption ql” = 0 implies that R <O, it is not legitimate; it must then be assumed that R = 0, 
ql’ l > 0 and the constraint is slackened. 

Certain motions of system (1.1) are difficult to investigate: these are motions that involve both 
basic mode cases 1 and 2. When the constraint switches from one state to the other at some time 
t = t * , the following cases may arise (Fig. 1). 

Case 3. The constraint is strained for t G t * , slackened for t > t * . 

Case 4. The constraint is slackened for t< t * and t > t *, strained at t = t *. 

(a) If qr’ (t * - 0) = 0, the phase curve (q(t), q’(t)) is continuous in the phase space R’” and 
touches the plane q1 = 0. 

(b) If ql’ (t * - 0) <O, a collision with the constraint occurs at t = t *, i.e. the generalized velocities 
change abruptly, during an in~nitesimal time interval; the change in the velocity ql’ is described in 
terms of Newton’s coefficient of restitution x: 

Q1’ (r* -t 0) = -xq,’ (t* - O), 0 < x < 1 (1.3) 

R (c) x = 0 in (1.3), but substitution of ql” = 0 into Eq. (1. I) at t = t * + 0 yields a negative reaction 

Case 5. The constraint is strained for t&t * and slackened for t < t *: 

(a) If 4,’ (tl - 0) = 0, th e phase curve is continuous and the straining of the constraint is not 
accompanied by a collision. 

(b) If q&--O&O, x = 0 in (1.3) and substitution of ql” = 0 into (1.1) gives RsO, this is the 
case of plastic collision. 

In addition, there is another possibility: infinite alternation of strained and slackened states of the 
constraint in the neighbourhood of f = t*, e.g. in the case of quasi-plastic collision 141. The 
collision-free motions that we are going to discuss include, apart from the basic modes 1 and 2, cases 
3 and Sa, 

2. CONDITIONS FOR THE EXISTENCE OF COLLISION-FREE MOTIONS 

Let us examine the conditions for slackening of the constraint (case 3) and collision-free straining 
(case 5a). 

~e~~iti~n 2.1. Using Eqs (l.l), we express &” in terms of q, q’ in the case R = 0. The locus of 
solutions of the equation 

41” (9, Q’) = 0 (2.1) 
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will be called the separation surface in the phase space R 2n, denoted by J. The domain in which 
ql’* >O will be denoted by J+, and the domain in which the opposite inequality holds will be 
denoted by J-. 

Under our assumptions, the left-hand side of Eq. (2.1) is continuously differentiable. Hence J is a 
closed set, while J+ and J- are open. 

Motion under the effect of a strained constraint may only occur in the domain J- or on its 
boundary J. If the constraint is slackened when t>t* and the phase curve is continuous, it follows 
from Taylor’s formula, since q1 (t *) = ql’(t *) = 0, that 

0 < q1 (t) = l~,q,” (%I (t - t*)“, % E (t*, t) 

that is, the representative point at t = 5 lies in Jf. Letting t-t* + 0, we obtain [q(t’), 
q’(t*)]fJ+UJ. 

We have thus proved the following necessary condition for slackening of the constraint. 

Theorem 2.1. If q1 =OfortGt*andqI>Ofort>t*, then at t = t * the representative point lies on 
the separation surface J. 

Remark. At the instant of separation, R aIso vanishes; since by the definition off we have ql" = 0 whenever 
R = 0, the assumption R>O implies that q,">O, contrary to condition (1.2). 

Theorem 2.2. Suppose that when t < t * the phase curve [q(t)9 q’ (t )] lies in the plane q1 = 0 and in 
the domain J- and that when t = t * it passes through a non-singular point of J, forming a non-zero 
angle with that surface. Then at times t>t* sufficientty close to t* the constraint is slackened, 

41 (r) 2 0. 

Proof. SinceR=Oatt=t”, as pointed out above, it follows, assuming that R = 0 for t> t *, that 
we can continue the phase curve while preserving its continuous differentiability. By assumption, 
the curve intersects J and enters the domain J+, so that such a continuation procedure yields a 
solution of system (1.1). By condition (1.2), there are no other continuous extensions of the 
solution. Since q1 l l >O in J+ but ql(t*) = ql'(t*) = 0, it follows that ql(t)>O for t>t*, which it 
was required to prove. 

Corollary. Under the assumptions of the theorem, ql"'(t * + 0) > 0. 
Indeed, the existence of q,“‘” when R = 0 follows from our assumptions about the form of system 

(1.1). In a neighbourhood of t * with t> t *, the derivative ql” is of the order of t - t *, since the 
tangent vector to the phase curve makes a non-zero angle with the surface ql” = 0. Thus the second 
term in Taylor’s formula 

is positive. 

ql” (t) = ql” (t*) + ql”’ (t* $- 0) (t - 79) + 0 (t - t*) (2.2) 

Example 2.1. Let us investigate the vertical motion of a two-body system ]l] consisting of a body elastically 
coupled to a leg (Fig. 2), under the action of the force of gravity. Let cl;, q2 be the distances from the leg and 
the body to the support, ml, mz their masses, k the stiffness of the spring (its mass is assumed to be negligibly 
small) and g the acceleration due to gravity. The Lagrangian is 

L - VSm,ql* + V,msqs*s - 8 (%qr -I- m,%) - ‘I& (qs - ql - a)‘, 4% > 0 (2.3) 

where a is the difference q2 - q1 in the unstrained state of the spring. Equations (1.1) take the form 

Qr” f 8 - kw” (4s - q1 - a) = Rm,-l, q,” + g f km,-a (qr - q1 - a) = 0 (2.4) 

The equation of the surface J is obtained by isolating q1 l ’ in the first equation of (2.4) when R = 0: 

qx” = krnx-l (qn - q, - a) - g = 0 (2.5) 
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FIG. 2. 

Replacing the equality in (2.5) by the inequality > or <, we obtain formulas defining .I+ and J-, respectively 
(see Fig. 3a). 

The motion when the constraint is strained (i.e. when the leg is in contact with the support) is described by 
the variables ql, q2* and is conveniently pictured in the phase plane (Fig. 3a). The characteristic feature of this 
motion is that the mechanical energy of the system is constant: 

h = V,ntpq,‘a + V,k (qn - u)~ + m,gq, = const (2.6) 

Curves (2.6) for different h values are shown in Fig. 3(a). The system has a single equilibrium position, when 
q2 = 42% = a-gm2ke1, which is the centre of a family of concentric ellipses. The only parts of the curves 
corresponding to real motions are those lying entirely in J- (for example, curve 1 describes a periodic motion 
of the system). By Theorem 2.2, motion of the representative point along an ellipse intersecting the curve J will 
end on the latter; the coupling with the support will then be slackened and the phase curve will leave the plane 
q] = 0. 

We now examine the conditions for collision-free straining of the constraint. If q1 > 0 for t> t * 
and ql(t*) = 0, then, since in collision-free motion the phase curve is continuous, it follows that 
ql’(t* -0)GO. 

If ql’(t* - 0) <O, the system will experience a collision with the constraint, which reduces to one 
of the cases 4(b, c) or 5(b) described in Sec. 1. 

If ql’(t* - 0) = 0, then ql’ is continuous at t = t * and no collision will occur (cases 4a or 5a). Since 
q1 > 0 when t < t * and q1 (t *) = ql’ (t *) = 0, it follows from Taylor’s formula that 

q1 (t, = 1!2 (t - t*)” 41” (EJ, t < E < t* 

whence we obtain ql”(E) >O. Letting t+t* - 0 in the last inequality, we obtain ql”(t* -0)aO. 
Strict inequality means that the constraint is slackened when t>t* (case 4a). We have thus proved 
the following theorem. 

z J+ 

FIG. 3 
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Theorem 2.3. Let ql>O for t<t* and ql =0 for t%?*, and assume that the phase curve is 
continuous. Then ql*‘(t*) = 0, i.e. at the instant the constraint is strained the representative point 
hits the separation surface J. 

We will now formulate the sufficient conditions for co~ljsio~-free straining of the constraint, 

Theorem 2.4. Suppose that the t< t * the phase curve lies in the domains q1 > 0 and J +) but at 
t = t* the representative point hits the intersection of the plane q1 = ql* = 0 and the surface J at a 
non-singular point of the latter, in such a way that the curve and the surface make a non-zero angle. 
Then q1 = 0 when I> t * and the phase curve is continuously differentiable. 

Proof. Under our assumptions, ql(t*-0) =O = qt’(t* -0) =ql**(t*-0). Set ql=O for z>P 
and determine the values of the variables q2ft), . . . , qn (t) by solving Eqs (1. I). The extended curve 
thus obtained is continuously differentiable, and therefore when t> t* it lies in J-, so that R>O in 
(1.1) and these equations are satisfied. The uniqueness of the solution follows from the fact that a 
change in the value of R will cause the violation of one of the conditions ql 20 or (1.2). 

CorotEary. Under the assumptions of the theorem, ql” l (t * - 0) < 0. 
The proof is analogous to that of the corollary to Theorem 2.2. 

Ex~rn~~~ 2.2. For our two-body jumper, the necessary condition for collision-free landing means that at the 
moment the leg touches the support its velocity must vanish, while the b&g& of the body over the support is 
qZJ = a i m,gk-‘. The sufficient conditions [Theorem ‘2.4) mean that, in addition, the velocity q2* of the body 
is negative. 

3. CONSTRUCTION OF MOTIONS WITH COLLISION-FREE FLIGHTS 

We wilt now look for motions of system (1.1) that include segments of different types, alternating 
according to the scheme Z-3-l-Sa-2. A rough representation of the graph of q1 (t) in such motions is 
shown in Fig. 4, we shall call segment I in flight between two strained intervats of type 2. 

By Theorem 2.1, the slackening must occur at a point of J; the subsequent type 1 motion is 
described by the formulas 

where q” and q** are the values of the variables at the instant t = to the constraint is slackened. The 
functions (3.1) are a solution of system (l.l), where R 3 0. 

At times t>P sufficiently close to t”, the value of q1 in (3.1) is positive. Let us assume that q1 30 

fort~<t<~andq~~~) =O. 
We define a mapping * of the part of the J in which qr = ql* = 0 into the plane q1 = 0, as follows: 

Q, (u”) = u (T), u = (q. q’), u0 = (qO, q*q (3.2) 

This mapping @ may also be defined implicitly by formuias f3.1), by setting d = Tand adding the 
equafity 

(3-3) 
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Depending on the nature of the strained state of the constraint, QI, may have different analytical 
properties, as we shall show below. 

Theorem 3.1. 1. Cp is differentiable at points corresponding to trajectories for which straining of 
the constraint is accompanied by a collision (cases 4b, 4c or 5b in Fig. 1). 

2. Cp is continuous but not differentiable at points corresponding to collision-free straining of the 
constraint (case 5a), following which the representative point enters the domain I-. 

3. If u(t) EJ+ Uf for t> T (as in case 4a), the Q, is discontinuous at the given point u’. 

Proof. 1. In this case 

2g (t, u”) It=T = q; (0 < O 

and by the Implicit Function Theorem Eq. (3.3) defines a differentiable function T = T(d) in the 
neighbourhood of the given point u’. Substituting T for t in (3. l), we obtain the explicit form of the 
differentiable mapping Cp. 

2. Since u(t) EJ- for t> T, it follows that then q1 (t, u’) <O in (3.1). Since the functions (3.1) are 
continuous, the curve u(t, U’S Au”) will also intersect the plane q1 = 0, and it will do so at a point 
near @(u”) but this means that Q, is continuous. 

The fact that the function is not differentiable follows from Lindeliif’s theorem as to the 
dependence of the solution of a system 

u =F(u), u(t”)=u” 

on the initial data [5]: for any t> to the Jacobian 1 iWW’1 is non-zero. Since 

at least one of the quotients AT/A+” (i = 1, . . . , 2n) is unbounded in the neighbourhood of u’. 
Since @(u’) is not an equilibrium position, at least one of the derivatives au,/&@ = 1, . . . ,2n) is 

not zero at t = T. Thus the partial derivative &,/au,” does not exist. 
3. In this case the phase curve is described by forrkulas (3.1) not only in the interval t*<f< T but 

also for t > T, since R vanishes in the domain J U .I+. The vector field F(u) in the neighbourhood of a 
non-singular point @(u”) is diffeomorphic to a constant vector field [S], and under the diffeomorph- 
ism the plane q1 =O is mapped onto some smooth surface. Since the unperturbed curve u(t, u”) 
touches this surface but does not cut it, while the curves u(t, u0 i- Au’) are parallel to it, some of 
these curves have no points in common with the surface in a neighbourhood of t = T. Consequently, 
A@-&0 as Au”+O. 

This theorem, combined with the results of Sec. 2, yields an algorithm to construct motions with 
collision-free flights: by analytical or numerical means, one finds points at which the range of the 
mapping @ intersects the plane q1 = ql’ = 0 and the surface J, and then verifies the conditions of the 
Theorem 2.4. 

~~u~p~e 3.1. Formulas (3.1) are easily worked out for the two-body jumper, by solving the linear system 
(2.4) for R = 0: 

41 = gw-* (1 - cos Y - Vava + av - a sin Y) (3.4) 

qt - Q*O + gw-* [av - 1/p+ + (n&J*) (CL sin Y + CO8 v - i)] 

6m kM 
Y = ox?, a = ~gqa’“, A4 = rn.1 + ma, 09 = - 

rnlrna 

The necessary conditions for a collision-free landing, q1 = ql’ = 41” = 0, taking (3.4) into consideration, 

may be written in the form 
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a (v - sin v) = COB v - i + llrvs, cc (1 - cos v) = v - sin v, a sin v = 1 - 

- cos v (3.5) 

The solution of system (3.5) are described by the formulas 

a - tua, v = 2a (34 

The sufficient conditions, besides (3.6), reduce to the inequality q2’ <O, whence, using (3.4), we 
obtain OL > 0. Equation (3.6) has an infinite number of positive roots, the smallest of which lies in the 
interval (7~, 3/2n). For each root we have a collision-free flight between the point 

9a” = !7zJ, q2%= $a (3.7) 

and its mirror image with respect to the q2 axis. 
To express v as a function of 01 at the end of the flight, we use the first of formulas (3.5), which 

gives 

cosv- 1 + l/nvs da 
a= 

(v cos ynv - 2 sin ‘/a~)~ 
v-sinv 9 dv= (v -sin v)* 20 (3.8) 

It is obvious from (3.8) that u (CX) is a continuous and monotone increasing function for cx > 0, but 
it is non-differentiable at points where v = 2tg’/zv, in which case OL = tg& = 55~~. Thus, in keeping 
with the conclusions of Theorem 3.1, loss of differentiability is always associated with collision-free 
motions (3.6). 

4. PERIODIC COLLISION-FREE MOTIONS AND THEIR ULTIMATE PROPERTIES 

If the forces acting on the system are conservative, the mechanical energy of the system will be 
conserved over intervals of collision-free motion. However, if collisions occur, and they are not 
absolutely elastic [x< 1 in (1.3)], then energy will be dissipated and the system will not be 
conservative. Consequently, if periodic motions exist, they are collision-free. 

If the constraint remains slackened throughout some periodic motion, q1 > 0, it will have no 
influence on other motions sufficiently close to the periodic motion, so that we can employ 
perturbation methods to investigate stability. 

If the periodic motions contain intervals over which the constraint is strained (ql = 0), the 
perturbed motion will generally be accompanied by collisions with the constraint. This case, 
therefore, will need special study. Some questions of stability in systems with absolutely elastic 
collisions (X = 1) were considered in [6, 71. In this paper we will discuss the case x < 1 in a system 
with two degrees of freedom. 

We shall assume that the Lagrangian has the form 

J5 = l/Z (al,9,‘2 + a22922'2) + wl + WI,' + Lo (fh 91 9 0 (4.1) 

where the coefficients depend on q, and Qr = Q2 f 0. The absence of a term a12q1’q2’ does not 
affect the generality of the argument, only requiring a special choice of the generalized coordinates 
[8]. If the quadratic part of the Lagrangian in some cooordinate system ql*, q2* is 

zI,* = l/Z (a,,*q,‘*2 + 2al,*q,‘*q,‘* + a,,*q,‘*2) 

then the following change of variables will produce the form (4.1) [8]: 

91 = 91*, 92 * = cp (Qtt !72h @!@I = --a12*+%2*, cp (0, 92) - 92 (4.2) 

The existence of an invertible change of variable (4.2) for all ql>O follows, once again, from 
Lindelof’s theorem; the explicit form of the substitution is unimportant in applications, since the 
results of the qualitative analysis are invariant with respect to the choice of coordinates. 
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The distinctive feature of the equations of motion of system (4.1) is that q2” is independent of the 
reaction of the constraint. 

Over intervals of collision-free motion, the phase curves are confined to surfaces of constant 
mechanical energy: 

h = L2 - L, = const (4.3) 

The strained intervals of the constraint may be represented in the phase plane (q2, q2') by tracing 
out the curves (4.3) for q1 = ql' = 0. If any such curve is closed, lies entirely within J- and contains 
no equilibrium positions of the system, it will describe a periodic motion in which the constraint 
remains strained at all times (curve 1 in Fig. 3a represents this type). The same is true of curves 
corresponding to sufficiently close values of the mechanical energy h. 

A second type of periodic motion is described by curves (4.3) that have points in common with the 
surface J but do not intersect J+ (curve 2 in Fig. 3a). 

Finally, a third type of periodic motion is obtained for curves (4.3) that intersect the surface J 
(curve 3 in Fig. 3a). In that case the representative point moves along the curve only as long as it 
remains in the domain J- UJ. On crossing J the phase curve leaves the plane q1 = 0, so that it is not 
possible to represent the next interval of motion in the (q2, q2') plane. Upon collision-free renewal 
of contact, the representative point returns to the plane q1 = ql' = 0, while remaining on the same 
surface (4.3); by Theorem 2.4, it will then cross J. We note that periodic motions of this type may 
exist even if Eq. (4.3) does not describe a closed curve in the (q2, q2') plane; the only requirement is 
that the curve should connect the point at which contact is renewed with the next point at which 
contact is broken. 

We will now prove two auxiliary propositions. 

Lemma 4.1. Let q(t), x(t) be vector-valued functions that satisfy the following systems of 
second-order differential equations: 

q” = F (q, q’), x” - F (0, x2, 0, x2’) (4.4) 

xI(t”) = q (P) = q”, x’ (P) = q’ (f) = q’O 

x, q E R2, F E cl (ST), to < t:\< to + At 

where fl CR 4 is a bounded closed domain. 
Then 

II q -XII = 0 (II 6% WI) as At-to 
II x II = maxt [x2 (t) + xm2 (t)r” 

(4.5) 

Proof. Transform Eqs (4.4) to integral form and subtract one from the other: 

q 0) - x (t) = Aq (t) (4.6) 
t 7 

Aq (t) = J dz [ [F (q (sh g’ (s)) - F (0,2a (sh 0, za’ (s))] ds 
to iQ 

Treating x(t) in (4.6) as a known function of time, we can determine q(t) by successive approximations. 
Setting 

q0 (0 = (0, 2, W, q”’ (G = x 0) + Aqrn-l 0) 
m = i, 2, . . ., q (t) = lim qm (t) 

7Tl-90 

(4.7) 

we can construct a solution of Eq. (4.6) on the assumption that A is a contractive mapping [9]. Since 

II k’ - Aq” II< C (At)’ 11 q’ - q” 11, C = maxo I dF I 

the mapping will indeed be contractive, provided A = C(At)’ is less than 1. 
Noting that by (4.6) and (4.7) q1 = x, we obtain 

Iln -xl- II Q - q1 II - II Aq -~~“U~~lq-~olI~~hlI~--ll+I~l-~~ 



Collision-free motion in systems with non-retaining constraints 

whence, since (A = o(At)), the estimate (4.5) now follows. 
We will use Lemma 4.1 to investigate the equations of motion of system (4.1). The auxiliary 

system defined in (4.4) is in that case 

Xl 
** - 

- all-1 @L&l - al') IrtsJc,'=O (4-g) 
. . 

x2 = a22 -l (aM6k2 - a,,‘xz’ - a,‘) ]Tllr;=O 

The second of these equations definesxz(t). Once it is solved, we can also solve the first equation: 

t 

Xl ** =f(q, x1* = 41'6+Jf(w 
to 

(4.9) 

Xl = Q1° + tt- fY41'0+ jdu~f(s)ds 

to to 

Lemma 4.2. Assume that y(t) satisfies the equation 

!/” = f (t), y (0) = 0, y’ (0) = 0 (6) as 6 --t 0, f E C1 (R) 

and let 7 be a time interval throughout which y > 0. Then the following estimates hold: 
If f(0) = -c<O, then T= U(S); y = 0(S2), y’ = O(S) for O<~GT and 

y.(k) = -y’(O) + O(y”(0)). 
2. Iff(0) = 0(Su2)>0,f’(0) = -c,<O, then 7 = 0(S’“),f(7) = O(?J~‘~)<O, Y’(T) = O(S). 
3. Iff(0) = 0(S’“)<O,f’(O) = -cl<O, then 7 = O(S1’2), Y’(T) = -2y’(O)- %f(0)7+u(S). 

Proof. 1. In this case 

8” c -c + 0 (?), y’ - II’ (0) - n + 0 (?), y = ‘c (v’ (0) - V,cT + 0 (r’l)) 

Equating y to zero we obtain T = 26c-* + o(6), implying the other assertions. 
2. In this case relations (4.9) become 

Y” - f (0) - Cl? + 0 (T2), y’ = y’ (0) + zf (0) - ‘/,cp’ + 0 (9) 

Y = z (!I’ (0) + ‘/aTj (0) - l/&l+ + 0 (r”)) 

(4.10) 

We determine T from the equation 

‘/&I? - l/J (0) 7 - I’ (0) + 0 ($1 - 0 

from which it follows that T = 0 (SU2), Y’(T) = -2y’(O) - M~f(0) + O(T~) and so on. 
3. Here again formulas (4.10) hold, but now with f(O)<O. This implies the desired estimates and the 

inequality 

I’ (z) + 2Y’ (0) > 0 (4.11) 

Let us consider the first type of periodic motion. 

Theorem 4.1. If a periodic motion is described by a closed curve II situated entirely within J- in 
the plane q1 = ql’ = 0, then it is orbitally stable. 

Proof. The assertion means that for any positive number E there exists S = S(E) > 0 such that, if at 
some time t = to the distance between u” and II is less than 6, then the phase curve through the point 
is distant less than E from II for all t > to. 

Since II CJ-, it follows that also u“EJ- for sufficiently small 6, so that at some time in an interval 
of the order of S the phase curve will intersect the plane q1 = 0. If x = 0 the representative point will 
remain in the same plane (case 5b), moving along one of the closed curves (4.3), which will merge 
with II as S-PO. 

If O<X< 1, a collision at t = tl will lead to subsequent slackening of the constraint (case 4b) and 
repeated collisions. Let vk be the value of ql’ after the kth collision. Then, applying Lemma 4.2 
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FIG. 5 

(case I), we see that before the (k+ 1)th collision the quantity y” = x1’ will be equal to 
-vk+O(vk*). Hence, by Lemma 4.1, vk+l = xvk+ 0(vk2), and for sufficiently small initial 
perturbations 6 we obtain 

+,+r <XI+, x, <X-’ < 1 (4.12) 

Consequently, the repeated collisions will be damped out over a time of the order of 6 (see [4]), 
and when that happens the total energy dissipation will also tend to zero together with 6. After the 
collisions have been damped out the representative point will lie on a closed curve II* in the plane 
q1 = ql’ = 0, which will merge with ll as 640. 

We now turn to the third type of periodic collision-free motion. Let II be a trajectory made up of 
two parts: 

(a) the part of the curve between points PI and P2 is described in the phase plane (q2, q2’) by 

(4.3); 
(b) the part of the curve between PI and P2 is not in the plane q = q,’ = 0; it is described by 

formulas 

u = u (h, I), u fh, 0) - PI. u (h, T) = PO, u = (q+ q’) 

(see Fig. 5). By Theorems 2.2 and 2.4, PI and P2 must lie on the surface of separation J. 

(4.13) 

Theorem 4.2. Assume that the following conditions are satisfied: 
1. The curve II intersects the surface at the points PI and P2 at a non-zero angle. 
2. dql (h, T)l&#O in formula (4.13). 
3. The coefficient of restitution x is less than l/2. 
Then IT is semistable, that is, it lies on the boundary of domains of attraction and repulsion in the 

phase space R4. 

Proof. Under the assumptions of the theorem, the trajectory of perturbed motion II* will cut the 
plane q1 = 0 at some point P2* near P2 (it is not necessarily true that P2* E.7; see Fig. 5). The 
motion prior to the collision is described by the first of formulas (4.13). As follows from Theorem 
2.4 and condition 2, we can rewrite the equation ql(h, T) = 0 in the neighbourhood of P2 in the 
form 

q1 (Ix, T) -I bhh + e (AT)3 + o ( 1 Ah 1 + 1 AT I3 ) = 0 (4.14) 

Solving these equations, we obtain an estimate 

(4.15) 
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where h* is the energy of the perturbed system over the “flight” interval. Differentiating (4.14) with 
respect to time and using (4.15), we obtain 

4; (h, 2’) = 3e (AZ’)2 + o (AI’)a = 36’f*e-‘/*p2 + o (p2) (4.16) 

AhI = II2 (1 - x2) alIQI’* (h, T) = B!2 (2 - x2) a,,h’l*e”/ap,4 + 0 ($) 

where AhI is the energy dissipated in the collision at P2*. 
The motion of the representative point after collision will depend on the value of 3c and also on the 

position of PZ* relative to the surface .I. If ?c = 0, Pz* EJ- UJ, then after collision (case 5b) the 
representative point will continue to move in the plane q1 = ql’ = 0 until the next intersection with J 
in the neighbourhood of PI ; there will then be a flight, followed by a collision at some point P2** in 
the neighbourhood of P2 ; and so on. The above-mentioned domains of attraction and repulsion are 
defined in the neighbourhood of II by the inequalities 

h* > h $- Ah,, h* < h (4.17) 

where AhI is the quantity defined in (4.16); to a first approximation, the attraction condition is 

h < tt* < h f -& a;;&-%?’ (4.18) 

If x. = 0, P2* E J+, the representative point will leave the phase plane (qz, q2’) after collision 
(case 4~); since motion along II takes place at non-zero velocity towards the domain J-, we can 
apply the second assertion of Lemma 4.2. The result is that the system experiences a flight of 
duration T = O(S’“) = O(p), at the end of which y’ = x1* will be a quantity of the order of k’. By 
Lemma 4.1, the same is true of ql’ and the representative point will enter J-. 

The energy Ah2 dissipated in the second collision will be of the order of *4, and then the motion 
will continue in the (q2, q2*) plane. Consequently, in this case too the domain of attraction defined 
by the inequality 

h” > h + Ah, + Ahz 

is not empty. 
The case xE (0, I!) is treated similarly. Here the ~rturbed trajectory II* will be made up of 

sections in the phase plane fq2, q2*), alternating with flights when the surface J is crossed, and series 
of intervals over which the collisions are repeatedly damped out in the neighbourhood of Pz . That 
the collisions will be damped out over a time interval of the order of S is proved just as in Theorem 
4.3; the damping condition (4.12) for x<% follows in this case from (4.11). The total energy 
dissipation in a quasi-static collision 

Ah, = Ah1 + Ah, + . . . 

is a quantity of the order of r_l”, so that the domain of attraction 

h* > h + Ahz 

is again not empty; the domain of repulsion is described by the second inequality in (4.17). 

Example 4.1. Periodic collision-free motions of the first type for our two-body jumper are described by the 
curves (2.6) that lie entirely in the strip O< qz<qz’ (qp0 by physical considerations). By Theorem 4.3, these 
motions are orbitally stable. 

Motions of the third type are described by conditions (3.6); remembering that always q2>0, we conclude 
that there are only a finite number of such motions, the actual number depending on the parameters of the 
system. For h* > h we have ACY > 0, as follows from (3.4), and in that case the point P2* is in J-. The domain of 
attraction in the case x = 0 is defined by (4.18), so that, using (3.4)-(3.8), we get 

2M’ 
A.cc< 81a3mlsma3 sing a 

(the part of the domain of attraction lying in the phase space is shown hatched in Fig. 3b), 
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Example 4.2. The Lagrangian of a link-up of two bodies in a satellite orbit is [2] 

L = 1/2 (r’* + PI++) - 9~’ + 8/,+ sina cp, r $ 1 

and the surface of separation is defined by the equation 

‘pea - 29’ + 3 sina cp - 0 

(replacing the equality sign here by > defines the domain J-). 
Formulas (3.1)) which describe the flight phase, are 

q = r sin cp = B, + B, co8 t + B, sin t 

6 - r COB q~ = A, - s/fBOt + 28, cos 1 - 28, sin t 

-40 - 63 - 2qo’. Bo = 2 (2qo + 6o’h B2 = -3% - 260.9 Ba - qo’ 

Periodic motions with collision-free flights may be constructed by setting 

‘1 (T) - rlo* 6 (T) = -601 rl’ (T) - -_?o’c 6’ (T) = 60’ 

and hence we obtain the conditions 

Bn cos l12t - B, sin llat, A, = S/d30t (4.19) 

Equations (4.19) have an infinite number of solutions; in the terminology of this paper, they define periodic 
motions of the third type. These motions were also obtained numerically in [2], on the assumption that x = 0. 
The final conclusion was that these motions actually occur for a set of initial data of measure zero only. 

The results of Theorem 4.2 indicate that when 0s x< ‘/2 each of the periodic motions has a domain of 
attraction. The fact that these domains were not detected by numerical analysis may be attributed to 
inadequate computational accuracy. 

1. 

2. 
3. 
4. 
5. 
6. 
I. 

8. 

9. 

REFERENCES 

SCHIEHLEN W. and GOA J., Simulation des Stossfreien Hiipfens. ZAMM 69,5,302-303, 1989. 
BELETSKII V. V., On the relative motion of a link-up of two bodies in orbit. Komich. Issled. 7, 6, 827-840, 1969. 
SUSLOV G. K., Theoretical Mechanics. Gostekhiidat, Moscow, 1946. 
NAGAYEV R. F., Mechanical Processes with Repeated Damped Collisions. Nauka, Moscow, 1985. 
KAMKE E., Handbook of Ordinary Differential Equations. Nauka, Moscow, 1976. 
IVANOV A. P., On stability in systems with non-retaining constraints. Prikl. Mat. Mekh. 48,5,725, 1984. 
IVANOV A. P., On conservation of stability of a mechanical system on slackening a non-retaining constraint. Prikl. Mat. 
Mekh. 53,4,539-548, 1989. 
IVANOV A. P. and MARKEYEV A. P., On the dynamics of systems with unilateral constraints. Prikl. Mat. Mekh. 48, 
4,632-636,1984. 
KOLMOGOROV A, N. and FOMIN S. V., Elements of the Theory of Functions and Functional Analysis. Nauka, 
Moscow, 1968. 

Translated by D.L. 


